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Abstract

INTRODUCTION: How to detect patterns of greater tau burden and accumulation is

still an open question.

METHODS: An unsupervised data-driven whole-brain pattern analysis of longitudinal

tau positron emission tomography (PET) was used first to identify distinct tau accu-

mulation profiles and then to build baseline models predictive of tau-accumulation

type.

RESULTS: The data-driven analysis of longitudinal flortaucipir PET from studies done

by the Alzheimer’s Disease Neuroimaging Initiative, Avid Pharmaceuticals, and Har-

vard Aging Brain Study (N = 348 cognitively unimpaired, N = 188 mild cognitive

impairment, N = 77 dementia), yielded three distinct flortaucipir-progression pro-

files: stable, moderate accumulator, and fast accumulator. Baseline flortaucipir levels,

amyloid beta (Aβ) positivity, and clinical variables, identified moderate and fast accu-

mulators with 81% and 95% positive predictive values, respectively. Screening for fast

tau accumulation and Aβ positivity in early Alzheimer’s disease, compared to Aβ posi-
tivity with variable tau progression profiles, required 46% to 77% lower sample size to

achieve 80% power for 30% slowing of clinical decline.

DISCUSSION: Predicting tau progression with baseline imaging and clinical markers

could allow screening of high-risk individuals most likely to benefit from a specific

treatment regimen.
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1 BACKGROUND

Alzheimer’s disease (AD) is an irreversible and progressive neurode-

generative disease.1 AD is characterizedby thepresenceof aggregated

amyloid beta (Aβ) plaques and by tau-containing neurofibrillary tan-

gles, leading to neurodegeneration, and then to cognitive and clinical

decline.2 Various Aβ-targeting therapies are being developed, with

the expectation that Aβ reduction would slow both tau accumulation

and cognitive decline. Thus far, treatments have been largely inef-

fective in slowing cognitive decline, with modest beneficial clinical

effects being reported only recently.3–6 Data from recent clinical tri-

als and observational cohorts provide supportive evidence that Aβ
is a key driver of tau.7 Moreover, Aβ and tau together have been

shown to promote cognitive decline.8–11 Although Aβ accumulation

is strongly associated with AD, disease severity and progression have

been more closely linked to tau. Several longitudinal studies have

investigated the spread of tau in AD and have suggested that the

density and spatial distribution of tau may have implications both for

the future tau spread and cognitive decline across the AD clinical

spectrum8,9,11.

A recent Aβ-lowering therapy trial used baseline tau levels, mea-

suredwith positron emission tomography (PET), to recruit participants

and used the change in tau PET burden as a secondary outcome.5

In that trial, participants with the lowest baseline tau PET burden

showed greater clinical benefitwith better primary and secondary cog-

nitive and functional scores in a post hoc analysis, suggesting that

Aβ-lowering therapies result in greater clinical outcomes in patients

in whom tau is not yet widespread, and that early tau may represent

an important treatment window in which intervention is more likely to

have a positive outcome if delivered to individuals on an aggressive tra-

jectory of AD protein accumulation and in temporal proximity to rapid

AD protein burden acceleration.

In this quest to identify patients who will most likely benefit from a

specific treatment based on their risk for greater tau accumulation, the

question of how to detect patterns of greater tau burden and accumu-

lation is largely unanswered. The disease course and the potential to

successfully target the pathology varies greatly among individuals,12

and heterogeneity in tau accumulation and spread patterns is likely a

contributing factor. Using cross-sectional tau PET images and a data-

driven approach, researchers have identified four distinct trajectories

of tau inAD,13 andhavemade longitudinal inferences about thenatural

history of tau progression. Such methods aimed at identifying distinct

spatiotemporal trajectories of tau accumulation from a single imag-

ing time point do not often exploit tau progression information over

time, when available, which might be more important for an accurate

identification of tau spatiotemporal trajectories.

With the growing collection of longitudinal tau PET, many stud-

ies show intercorrelation among regions representing stages of tau

accumulation over time, which greatly depends on tau burden at

baseline.9,14–16 Machine learning–based approaches have been pro-

posed to predict individualized rates of future tau accumulation and

to identify populations at greatest risk of future tau accumulation,17

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed PubMed,

Google Scholar, and reference lists of relevant research

articles. Some studies have shown heterogeneity in tau

accumulation and spread patterns in Alzheimer’s disease

(AD) that may contribute to variability in the disease

course and individual response to treatments targeting

AD pathology. However, the magnitude of accumulation

rates is usually based on change at the last available

measurements reflecting current patient status without

accounting for potential heterogeneity in dynamics of

temporal profiles and spatial patterns.

2. Interpretation: Our modeling approach identified three

distinct spatiotemporal patterns of tau progression,

whicharepredictable frombaseline taupositronemission

tomography and clinical data with 81% to 95% posi-

tive predictive value. Screening for amyloid beta (Aβ)
positivity and fast tau accumulation could deliver up to

77% reduction in required sample size in clinical trials of

Aβ-targeting drugs.
3. Future Directions: Future work should further vali-

date tau biomarker enrichment for designing effective

pharmaceutical trials by stratifying high-risk individu-

als for accelerated pathology progression and assessing

whether such enrichment criteria introducebiases to trial

outcomes.

which might have great translational impacts on clinical trials. How-

ever, in majority of published studies, the magnitude of accumulation

rates is usually based on change at last availablemeasurements reflect-

ing the patient’s current status, without accounting for potential

heterogeneity in dynamics of temporal profiles and in spatial patterns.

Thus, there is a need to evaluate the distinct patterns of tau accu-

mulation using a method that jointly exploits the whole history of

longitudinal measurements of all considered spatial tau sites to design

optimal tau inclusion criteria for clinical trials.

This work aimed to determine distinct AD tau accumulation pro-

files among older individulas in three large longitudinal cohorts of

cognitively unimpaired (CU) individuals, individuals with mild cogni-

tive impairment (MCI), and individuals with a clinical AD dementia

diagnosis. Different from previous studies, we propose an unsuper-

vised, data-driven, whole-brain, longitudinal pattern analysis approach

leveraging the spatially and temporally rich information provided

by longitudinal tau PET. We first identified distinct subtypes of

tau accumulation profiles from longitudinal observational data and

then built baseline models predictive of these tau accumulation

profiles.
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2 METHODS

2.1 Participants

Datawereobtained froma total ofN=613 individuals from three inde-

pendent observational cohorts: theAlzheimer’sDiseaseNeuroimaging

Initiative (ADNI),18 a phase 2/3 study undertaken as part of Avid

Radiopharmaceuticals’ clinical development program for their flortau-

cipir F-18 PET radiotracer (AVID-05),9 and the Harvard Aging Brain

Study (HABS).19 ADNI data used in the preparation of this article

were obtained from the ADNI database (adni.loni.usc.edu). The ADNI

was launched in 2003 as a public–private partnership, led by Princi-

pal InvestigatorMichaelW.Weiner, MD. The primary goal of ADNI has

been to test whether serial magnetic resonance imaging (MRI), PET,

other biological markers, and clinical and neuropsychological assess-

ment can be combined to measure the progression of MCI and early

AD. For up-to-date information, see www.adni-info.org.

The study included participants with an Aβ PET scan using either
18F-florbetapir (ADNI and AVID-05) or 11C-PiB (Pittsburgh compound

B; HABS) and two or three 18F-flortaucipir tau PET scans within 3

years of study participation. Aβ PET scans were previously processed

using published cohort-specific processing streams, and Aβ positiv-

ity was defined using previously established thresholds: standardized

uptake value ratio (SUVR)= 1.1021 for 18F-florbetapir PET (ADNI and

AVID-05)20 and distribution volume ratio (DVR) = 1.20 for 11C-PiB

PET (HABS).21 Based on these thresholds, for each subject, we used

the Aβ positivity status, instead of the actual composite SUVR value, as

one of the prediction parameters, and hence, no harmonization of our

multi-site Aβ PET data was required.

2.2 Tau PET imaging

FlortaucipirPETdataacquisitionprocedures for eachcohort havebeen

described previously.22–24 To minimize the impact of inter-scanner

variabilities as well as that of differences in acquisition and recon-

struction protocols, flortaucipir PET scans from all three cohorts

were smoothed to an intrinsic smoothness of 8 mm full-width half-

maximum. Subsequently, the data underwent preprocessing using the

same pipeline recommended by ADNI PET Core (https://adni.loni.usc.

edu/). Motion corrected, averaged, and smoothed flortaucipir images

were each rigidly co-registered to their respective native T1-weighted

MRI, intensity normalized using an eroded subcortical white matter

mask to estimate tau SUVR images,24,25 and corrected for partial

volume effect using a T1 MRI-based approach.26 Each T1-weighted

anatomical MRI was segmented into cortical, subcortical, cerebellar,

and white matter regions of interest (ROIs) using the automated open-

source processing framework Advanced Normalization Tools (ANTs),

by first applying a bias field correction followed by a deformable reg-

istration to warp a template to the subject brain image, and then using

a multivariate Markov random fields–based segmentation method to

perform segmentation.27 The entire cortex of each subject’s brain was

then parcellated into 35 bilateral ROIs based on a previously published

volumetric Desikan–Killiany–Tourville atlas28.

Previous studies on the progression of tau accumulation focused

on algorithmic rate estimates either from a priori selected anatomi-

cal parcellations (e.g., medial temporal lobe or inferior temporal gyrus)

or target volumes of interest consisting of a weighted average of

voxels or meta-regions of interest found to contribute to discrimina-

tion between clinical groups (e.g., Aβ-positive CU vs. Aβ-negative CU

or Aβ-positive cognitively impaired [CI] vs. Aβ-positive CU).9,15 Find-

ings in both neuropathology studies and emerging data with tau PET

tracers support the view for the predominance of stereotypical tau

PET patterns in individuals across the AD spectrum.29 Leveraging the

knowledgeof the stereotypical patterns of tau accumulationbrain sites

and aiming for a granular regional quantification of tau pathology, we

defined tau accumulation sites of interest bilaterally following the six-

stage operationalized neuropathologic staging scheme proposed by

Braak et al.30 Furthermore, previous studies showed that a lateralized

difference in Braak tau stages might be present in AD.31,32 There-

fore, we analyzed 10 Braak tau composite ROIs from left and right

hemispheres: Left/Right Braak-I (entorhinal cortex), Left/Right Braak-

III (amygdala, parahippocampal, fusiform, and lingual gyri), Left/Right

Braak-IV (middle temporal, caudal anterior cingulate, rostral ante-

rior cingulate, posterior cingulate, isthmus cingulate, inferior temporal,

insula, and temporal pole), Left/Right Braak-V (superior frontal, lateral

orbitofrontal, medial orbitofrontal, frontal pole, caudal middle frontal,

rostral middle frontal, pars opercularis, pars orbitalis, pars triangularis,

lateral occipital, supramarginal, inferior parietal, superior temporal,

superior parietal, precuneus, banks of superior temporal sulcus, and

transverse temporal cortex), and Left/Right Braak-VI (pericalcarine,

postcentral, cuneus, precentral, andparacentral cortices). Braak-II (hip-

pocampus) was excluded due to flortaucipir signal spill-in from the

choroid plexus. Regional flortaucipir SUVR values were corrected for

normal confounding effects of age and sex observed in Aβ-negative CU
individuals.

We recognize thatMRI-based pre-processing of tau-PET scans may

not be feasible or widely available due to various reasons, such as

lack of access to MRI scans or contraindications for MRI in some

patients. To evaluate the robustness of the tau progression prediction

method, described below, to different tau-PET processing frameworks,

we additionally computed and used regional SUVR values from ADNI

participants using a PET-only processing pipeline without correction

for partial volume effects.33 The corresponding results are included in

the supporting information (Figure S1).

2.3 Statistical analysis

To identify distinct clusters of longitudinal tau progression profiles,

we allowed all individual regional flortaucipir measures from all time

points to factor into an unsupervised Bayesian multivariate cluster-

ing of the longitudinal data using a mixture of multivariate generalized

linear mixed (MMGLM) model. We chose to use an unsupervised
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clustering approach to discover distinct patterns of longitudinal tau

accumulation without imposing any prior assumptions on region selec-

tion nor on outcome associations. This approach allowed us to explore

the data without being influenced by previously identified tau accu-

mulation results and to identify novel patterns that may not have

been apparent using traditional supervised approaches. The MMGLM

model uses a random-effect structure when estimating heterogeneity

between individuals’ longitudinal progression curves, allowing esti-

mates of distinct clusters of accumulators and probabilities of cluster

membership. Specifically, a model was built whereby all regional flor-

taucipir SUVRvalues fromall time pointswere included asmultivariate

outcome variables (i.e., multivariate longitudinal feature space) and

regressed on time in the study while accounting for inter-regional

dependence and irregular time sampling. A random intercept and slope

for each subject were included in themodel to adjust for multiple mea-

surements over time and for baseline variability across participants.

This clustering approach is a K-means-style procedure in that the num-

ber of clustersmust be chosenapriori. Therefore, theoptimumnumber

of clusters with distinct tau progression patterns was estimated based

on deviance statistics calculated by using multiple numbers of clusters

ranging from one to five.

We assessed the differences among the estimated tau progression

clusters based on the baseline demographic, clinical, and biomarker

variables of interest, including age, sex, years of education, ethnicity,

race, apolipoprotein E (APOE) ε4 carrier status, Aβ positivity, regional
tau burden, AD meta-ROI atrophy,34 cerebrovascular white matter

lesion (WML) burden, the Mini-Mental State Examination (MMSE),

Clinical Dementia Rating – Sum of Boxes (CDR-SB), the Alzheimer’s

Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), MCI diag-

nosis, dementia diagnosis, and psychiatry symptoms (GeriatricDepres-

sion Scale [GDS]), usingWilcoxon rank-sum test and Fisher’s exact test

for continuous and categorical variables, respectively. When repeated

measures were available for the variables of interest, we also cal-

culated the differences between clusters based on the longitudinal

change in these variables using mixed effect regression assuming

an independent correlation structure and conditional on a random

intercept.

We then tested the ability to predict, for each subject, the tau

progression cluster membership from a set of candidate baseline

variables usingmulticlass random-forest classification (MC-RFC)mod-

eling. Candidate predictors for MC-RFC modeling were limited to

factors available for all three study cohorts: age, sex, years of educa-

tion, APOE ε4 carrier status, Aβ positivity, regional flortaucipir SUVR,
and MMSE, which are also commonly collected in clinical trials. Ran-

dom 60% and 40% split was used to train and test the MC-RFCmodel.

The choice of the 60–40 split was based on the size of our dataset and

to ensure an adequate number of samples in both the training and test-

ing sets. To ensure the stability of the results, we repeated the random

train–test split 100 times to evaluate the performance of our model

with different splits.

To assess the value of the estimated flortaucipir-progression pro-

files, we estimated sample sizes required for various clinical trial

enrichment scenarios to achieve 80% power to detect a range of

assumed treatment effect sizes (20%–50%) for 18-month trials for

Aβ-positive early AD, AD, and MCI populations, and 48-month tri-

als for Aβ-positive CU with cognitive outcome assessment performed

every 6 months, using longitudinal clinical measures from ADNI par-

ticipants. Cognitive outcome measures of interest included changed

in ADAS-Cog13, CDR-SB, and Preclinical Alzheimer’s Cognitive Com-

posite (PACC) as these are the tools typically used in AD clinical

trials.35 Change in flortaucipir SUVR in the temporal metaROI com-

prising the bilateral entorhinal cortex, amygdala, fusiform gyrus, and

inferior and middle temporal cortices36 was also considered as an out-

come measure of interest since this measure has been included in

recent AD trials as a secondary outcome measure. The enrichment

scenarios considered demographic and clinical inclusion criteria used

in the design of recent clinical trials together with (1) screening for

Aβ biomarker evidence only; and (2) screening for both baseline Aβ
biomarker evidence and for flortaucipir-progression profiles. Sample

size calculations informed by ADNI data were performed assuming a

linear mixed-effects model analysis using standard methods described

elsewhere37.

All analyses were performed using R software, v4.1.2

(www.r-project.org). Unsupervised MMGLM clustering model, MC-

RFC predictivemodeling, and sample size calculationswere performed

using the R packages, MixAK, mlr, and longpower, respectively.

3 RESULTS

3.1 Participants characteristics

Both ADNI (as of Sept 2022) and AVID-05 datasets contained CU and

demented participants, whereas HABS (date release 2.0; July 2021)

dataset was composed of CU participants only. Included participants

were all ≥50 years. This resulted in 1515 data points from 613 partici-

pants with characteristics shown in Table 1 and Table S1 in supporting

information.

3.2 Distinct flortaucipir progression groups

The MMGLM clustering model resulted in three distinct flortaucipir

progression groups (Figure 1). Based on the longitudinal flortaucipir

progression profiles, these three distinct groups are herein referred

to as (1) “stable” group presenting with minimal flortaucipir accumu-

lation (meanΔSUVRof 0.011−0.019 SUVRunits/year) across all Braak

regions, (2) “moderate accumulator” group with slow flortaucipir accu-

mulation rates (0.030−0.051SUVRunits/year) predominantly inBraak

III–V regions, and (3) “fast accumulator” group with accelerated flor-

taucipir accumulation rates (0.034–0.11 SUVR units/year) in the Braak

III–VI regions.

Stratification of participants into the three flortaucipir progres-

sion clusters results in 440 participants assigned to the stable group,

96 participants to the moderate flortaucipir accumulator group,

and 38 participants to the fast accumulator group. The remaining
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TABLE 1 Demographics, cognitive scores, AD biomarker characteristic, and number of flortaucipir PET scans within study cohorts. Baseline
refers to first flortaucipir PET observation time point.

ADNI (N= 326) AVID-05 (N= 161) HABS (N= 126)

Variables Mean (SD) Range Mean (SD) Range Mean (SD) Range

Age (years; baseline) 74.2 (7.3) [55.7,92.2] 71.0 (9.7) [50.0,95.0] 75.7 (6.1) [64.8,90.0]

Education (years) 16.4 (2.7) [8,20] 15.5 (2.2) [8,18] 16.0 (3.1) [8,20]

Duration of flortaucipir PET follow-up

(years)

2.2 (1.1) [0.65,5.9] 1.4 (0.3) [0.6, 1.9] 2.4 (0.9) [1.2,5.6]

% Female (N) 48% (157) 49% (79) 56% (70)

% Black or African American (N) 5.6% (18) N/A 13.6% (17)

%Asian (N) 0.9% (3) N/A 0.8% (1)

%Hispanic or Latinx (N) 5.6% (18) N/A 0% (0)

%CU (N) (baseline) 52% (171) 32% (51) 100% (126)

%MCI (N) (baseline) 34% (111) 48% (77) 0% (0)

%Dementia (N) (baseline) 13% (44) 20% (33) 0% (0)

%w/ 2-time point flortaucipir PET scans 56% (184) 20% (32) 86% (108)

%w/ 3-time point flortaucipir PET scans 44% (142) 80% (129) 14% (18)

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AVID-05, Avid Pharmaceuticals tau trial; CU, cognitively unim-

paired; HABS, Harvard Aging Brain Study; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; PET, positron emission tomography; SD,

standard deviation.

39 participants out of 613 (6%) had uncertain classification based on

highest posterior density credible intervals (Table 2).

Leave-dataset-out analyses replicated the optimal three-group

solution, with the percentage overlap for participants assigned to the

same cluster ranging from 86.26% to 94.86%, with an average overlap

of 92.70%.

Characteristics of the three flortaucipir progression groups are

reported in Table 2 and Figure 2. The groups did not differ statistically

in ethnoracial and sex distributions. The fast accumulators compared

to stable and moderate accumulator groups had on average one fewer

year of education, which was statistically significant. Ninety-eight per-

cent of Aβ-negative CU individuals presented with stable flortaucipir

progression, and68%of theAβ-positive individualswithCI anddemen-

tia presented with moderate or fast flortaucipir progression profiles.

The prevalence of moderate and fast flortaucipir progression profiles

increasedwith Aβ positivity, cognitive impairment, andAPOE ε4 carrier
status.

The distribution of cases with two versus three time points of

flortaucipir PET scans was similar among all three groups. However,

moderate accumulator and fast accumulator groups had on average

0.5 years and 0.7 years shorter duration of flortaucipir PET follow-

ups, respectively, reflecting study design differences across ADNI,

AVID-05, and HABS.

At the time of the first flortaucipir PET observation, moderate accu-

mulators, compared to their stable counterparts, were characterized

by older age, higher prevalence of APOE ε4 carriers, greater WML

burden, higher prevalence of Aβ-positive, greater flortaucipir burden,
thinner cortex in the AD meta-ROI, worse global cognitive perfor-

mance in MMSE and ADAS-Cog, worse clinical symptoms (CDR-SB),

and higher prevalence of clinical MCI diagnosis (Table 2 and Figures 2

and 3). Moderate accumulators had greater rates of cognitive and

clinical decline overall (MMSE, ADAS-Cog, CDR-SB). In addition, they

acquired more depressive symptoms (GDS) over time compared to

those within the stable flortaucipir progression group.

Similarly, fast accumulators, compared to their stable andmoderate

accumulator counterparts, were characterized by greater flortaucipir

burden, worse global cognitive performance onMMSE and ADAS-Cog,

and worse clinical symptoms (CDR-SB). However, they were younger

with higher prevalence of clinical dementia diagnosis at the timeof first

flortaucipir PET scan (Table 2 and Figures 2 and 3). Fast accumulators

also had a higher prevalence of APOE ε4 carriers, Aβ positive status,

and thinner cortex in the AD meta-ROI compared to the stable group

but did not differ on these variables compared to the moderate accu-

mulators. Finally, fast accumulators had greater cognitive and clinical

decline (MMSE, ADAS-Cog, CDR-SB) over time compared to the stable

andmoderate accumulator groups.

3.3 Predicting flortaucipir progression groups

We tested to what extent the flortaucipir progression groups could be

predicted using an MC-RFC model based on the baseline variables of

interest. This is an imbalanced classification problem because of the

skewed class distribution toward the stable group, making it harder to

build a predictive model for moderate accumulator and fast accumula-

tor groups. Further,whilemost classifiers assume thatmisclassification

costs are the same for false negative and false positive predictions,

the cost of false positive predictions may be conceptually greater than

the cost of false negative predictions, or vice versa, in clinical practice

and in clinical trial settings. The classification problem was then set to
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F IGURE 1 Longitudinal flortaucipir progression rates for three distinct accumulation groups in the ADNI, AVID-05, and HABS cohorts. Plots
represent annual change in flortaucipir PET SUVRswithin each group (A) and estimated effect sizes (FDR-adjusted P< 0.01) between
accumulators and their stable counterparts in anatomical regions-of-interest (B). (C) Bar and box plots represent the annual change and variance in
left and right Braak I–VI SUVRswithin each group, respectively. # Braak II region was not included in the clusteringmodel. * and *** represent
statistically significant group differences compared to the stable group at P< 0.01 and P< 0.001, respectively. ADNI, Alzheimer’s Disease
Neuroimaging Initiative; AVID-05, Avid Pharmaceuticals tau trial; FDR, false discovery rate; HABS, Harvard Aging Brain Study; PET, positron
emission tomography; SUVR, standardized uptake value ratio.

minimize the totalmisclassification cost instead of optimizing the over-

all accuracy using a cost-sensitive learning scheme to address these

challenges. Imbalanced classification costs were assigned based on the

inverse class distribution.

Results show that baseline flortaucipir uptake in bilateral Braak-IV,

Braak-III, Braak-V, and Braak-I ROIs, Aβ positivity status, and MMSE

ranked with high variable importance in predicting the longitudinal

flortaucipir progression group (Figure 4), while sex, age, APOE 𝜀4 car-

rier status, and baseline flortaucipir uptake in bilateral Braak-VI ROI

were among the variables with low-ranking importance. The MC-

RFC reached an overall accuracy of 92% (95% confidence interval:

[91%, 93%]) and balanced accuracy of 87% [86%, 89%] with a pos-

itive predictive value (PPV) of 81% [77%, 85%] for the moderate

accumulators and 95% [92%, 100%] for the fast accumulators, and

a negative predictive value (NPV) of 94% [93%, 95%] for the stable

group.
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TOSUN ET AL. 5611

TABLE 2 Demographics, cognitive scores, AD biomarker, and risk characteristics for the three flortaucipir progression groups in ADNI,
AVID-05, and HABS cohorts. Baseline refers to first flortaucipir PET observation time point.

Stable

(N= 440)

Moderate

accumulator

(N= 96)

Fast

accumulator

(N= 38)

Stable vs.

moderate

accumulator

Stable vs.

fast

accumulator

Moderate

accumulator

vs. fast

accumulator

Uncertain

classificationc

(N= 39)

Variables Mean (SD) Mean (SD) Mean (SD) Pr Pr Pr Mean (SD)

Age (years; baseline) 73.1 (7.7) 76.1 (7.3) 70.6 (9.8) <0.001 0.05 <0.001 76.7 (8.0)

Education (years) 16.2 (2.8) 16.3 (2.3) 15.1 (2.3) 0.55 0.02 0.005 16.0 (2.5)

MMSE (baseline) 28.7 (1.8) 26.5 (3.3) 23.0 (4.2) <0.001 <0.001 <0.001 26.8 (2.6)

ΔMMSEb –0.04 (0.33) –0.6 (0.7) –1.7 (0.9) <0.001 <0.001 <0.001 –0.57 (0.55)

CDR-SBa (baseline) 0.46 (1.1) 1.5 (1.6) 4.4 (3.0) <0.001 <0.001 <0.001 1.7 (2.0)

ΔCDR-SBb 0.09 (0.3) 0.5 (0.6) 1.5 (0.8) <0.001 <0.001 <0.001 0.45 (0.46)

ADAS-Coga (baseline) 9.3 (4.2) 13.6 (6.2) 21.4 (6.9) <0.001 <0.001 <0.001 14.2 (5.2)

ΔADAS-Cogb 1.1 (0.4) 1.6 (0.6) 2.7 (0.7) <0.001 <0.001 <0.001 1.6 (0.50)

GDSa (baseline) 1.9 (2.6) 2.1 (2.1) 1.8 (1.8) 0.59 0.83 0.56 1.8 (2.3)

ΔGDSb 0.06 (0.15) 0.12 (0.14) 0.10 (0.17) 0.04 0.37 0.72 0.084 (0.16)

WMLb burden (cc;

baseline)

1.2 (8.0) 5.8 (17.8) 3.8 (8.2) 0.01 0.09 0.91 3.07 (10.7)

Meta ROI thickness (mm;

baseline)

3.0 (0.32) 2.6 (0.40) 2.5 (0.45) <0.001 <0.001 0.29 2.7 (0.40)

Duration of flortaucipir

PET follow-up (years)

2.2 (1.1) 1.7 (0.8) 1.5 (0.5) <0.001 <0.001 0.17 1.7 (0.9)

% Female (N) 50% (218) 55% (53) 55% (21) 0.37 0.61 1 36% (14)

% Black or African

Americana (N)
7.7% (26/338) 6.2% (4/64) 0% (0/18) 18% (5/27)

%Asiana (N) 0.6% (2/338) 0% (0/64) 0% (0/18) 7% (2/27)

%Hispanic or Latinxa (N) 3.5% (12/339) 4.7% (3/64) 5.6% (1/18) 0.72 0.50 1.0 26% (7/27)

% APOE ε4 carriers (N) 30% (131) 63% (61) 71% (27) <0.001 0.002 0.88 63% (22/35)

%Aβ-positive (N)
(baseline)

32% (141) 88% (84) 97% (37) <0.001 <0.001 0.18 69% (27)

%CU (N) (baseline) 70% (308) 29% (28) 0% (0) <0.001 <0.001 <0.001 31% (12)

%MCI (N) (baseline) 25% (111) 47% (45) 37% (14) 46% (18)

%Dementia (N)
(baseline)

5% (21) 24% (23) 63% (24) 23% (9)

%w/ 2-time point

flortaucipir PET

scans (N)

54% (240) 52% (50) 39% (15) 0.73 0.09 0.25 49% (19)

%w/ 3-time point

flortaucipir PET

scans (N)

46% (200) 48% (46) 61% (23) 51% (20)

%ADNI cases (N) 52% (228) 60% (58) 47% (18) <0.001 <0.001 0.04 56% (22)

%AVID-05 cases (N) 22% (98) 32% (31) 53% (20) 31% (5)

%HABS cases (N) 26% (114) 7% (7) 0% (0) 23% (5)

Abbreviations: Aβ, amyloid beta; AD,Alzheimer’s disease;ADNI, Alzheimer’sDiseaseNeuroimaging Initiative; AVID-05,AvidPharmaceuticals tau trial;APOE,
apolipoprotein E; cc, cubic centimeter; CDR-SB, Clinical Dementia Rating–Sumof Boxes; CU, cognitively unimpaired; GDS, GeriatricDepression Scale; HABS,

Harvard Aging Brain Study; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; PET, positron emission tomography; ROI, region of

interest.
aData only available for ADNI andHABS participants.
bData only available for ADNI participants.
cUncertain classification based on highest posterior density credible intervals; 46% (18/39) were classified as stable, 41% (16/39) as moderate progressor,

and 13% (5/39) as fast progressor.

Statistically significant differences are highlight in bold.
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5612 TOSUN ET AL.

F IGURE 2 Distribution of stable, moderate accumulator, and fast
accumulator flortaucipir progression profiles with respect to Aβ
positivity, cognitive impairment, and APOE ε4 carrier status. Aβ,
amyloid beta; APOE, apolipoprotein E; CN, cognitively normal; Dx,
diagnosis; MCI, mild cognitive impairment.

3.4 Required effect size and sample size for
clinical trials

The effectiveness of screening for evidence of Aβ pathology with vari-
able tau progression was compared to joint screening for evidence of

Aβ and tau accumulation profiles (stable, moderate accumulator, and

fast accumulator), as depicted in Figure 5 and summarized in Table 3.

Figure 5 shows the treatment effect sizes plotted against sample sizes

for the four enrichment schemes in an 18-month placebo-controlled

trial for early AD. The figure highlights the combinations required to

achieve 80% power for clinical outcomemeasures of ADAS-Cog, CDR-

SB, PACC, as well as biomarker outcome measure of tau burden in the

temporal metaROI. Additionally, Table 3 summarizes the sample size

requirements for Aβ-positiveMCI, Aβ-positive AD, and Aβ-positive CU
populations for the same scenarios of tau accumulation profile-based

enrichment. For instance, to achieve 80% power for a 30% slowing of

clinical decline in ADAS-Cog13 compared to placebo in an 18-month

trial for early AD, a sample size of N = 97 of Aβ-positive and fast tau

accumulator participants per group was required. This is in contrast

to N = 212 of Aβ-positive and moderate tau accumulator participants

and N = 266 of Aβ-positive participants with variable flortaucipir pro-
gression profiles (i.e., no tau progression screening). We estimated a

reduction in required sample size of 2.7- to 4.3-fold for clinical out-

come measures of ADAS-Cog13, CDR-SB, and PACC, and a 1.8-fold

reduction for change in temporal meta-ROI tau SUVR as the outcome

measure in an 18-month trial for early AD, comparing cohort selec-

tion based only on Aβ positivity with variable tau progression profile

to cohort selection based on both Aβ positivity and fast tau accumu-

lation profile predictions. Screening for fast, but not moderate, tau

accumulation profile participants within Aβ-positive AD yielded a 1.7-

to 2.1-fold reduction in required sample size to detect 30% slowing of

the clinical outcome measures of interest, while a 1.4-fold reduction

in required sample size to detect 30% slowing of change in tau SUVR

in temporal metaROI was observed only in the screening scenario for

moderate tau accumulation. In contrast, screening for Aβ-positiveMCI

participants with either moderate or fast tau accumulation profiles

consistently yielded 1.2- to 12.3-fold reduction in required sample size

to detect 30% slowing of both the clinical and temporal metaROI tau

outcomemeasures of interest. Finally,when screened formoderate tau

accumulation profiles, the sample size required in a 4-year placebo-

controlled trial for Aβ-positive CU was reduced by 4.5- to 6.8-fold to

detect 30% slowing of both the clinical and temporal metaROI tau

outcomemeasures of interest.

4 DISCUSSION

We identified three groups of flortaucipir progression profiles: sta-

ble, moderate accumulator, and fast accumulator. The data-driven

clustering results represent an extension of prior findings on tau accu-

mulators. Specifically, (1) Aβ-positive, APOE ε4 carriers with MCI or

dementia due to AD diagnosis are more likely to progressively accu-

mulate tau, whereas Aβ-negative CUs tend to present with stable tau;
(2) the faster the pace of tau accumulation, the greater the rate of

cognitive decline and neurodegeneration; and (3) baseline tau levels

together with Aβ positivity and severity of clinical and cognitive symp-

toms predict a subsequent increase in tau levels. Longitudinal tau PET

studies consistently reported that tau progresses faster in individu-

als with Aβ,15,38 albeit tau accumulation is seen in some brain regions

among older inviduals without Aβ deposition.39 These studies have

similarly concluded that Aβ deposition is a prerequisite for tau spread
to the cortex, which coincides with onset of clinical symptoms;40,41

baseline tau levels predict subsequent tau accumulation;16,17 and both

baseline and progressive accumulation of tau correlate with neurode-

generation and cognitive decline.8,11,16,42 In line with prior research,

moderate accumulators and fast accumulators in our study presented

with greater baseline tau levels, worse baseline cognitive perfor-

mances and clinical diagnoses, and greater rates of clinical decline in
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TOSUN ET AL. 5613

F IGURE 3 Baseline characteristics of the three distinct flortaucipir progression groups in the ADNI, AVID-05, and HABS cohorts. Plots
represent estimated baseline flortaucipir PET SUVR effect sizes (FDR-adjusted P< 0.01) between accumulators and their stable counterparts in
anatomical regions-of-interest (A). (B) The radar and box plots represent baseline flortaucipir PET Braak SUVRswithin each group. #Braak II region
was not included in the clusteringmodel. * and *** represent statistically significant group differences compared to the stable group at P< 0.01 and
P< 0.001, respectively. ADNI, Alzheimer’s Disease Neuroimaging Initiative; AVID-05, Avid Pharmaceuticals tau trial; FDR, false discovery rate;
HABS, Harvard Aging Brain Study; PET, positron emission tomography; SUVR, standardized uptake value ratio.

a dose-dependent manner. Our results strengthen previous observa-

tions that cortical tau burden increases particularly in people with

significant Aβ pathology and that, in these people, the greater is tau

burden at baseline themore it accumulates over time.

We also observed additional clinical and biomarker characteristics

unique to these tau accumulator groups. Compared to their stable

counterparts, moderate accumulators were older with greater cere-

brovascular WML burden and had more depressive symptoms’ onset

over time, whereas fast accumulators were younger. Older age at

symptom onset is associated with lower tau and Aβ,43 consistent

with established evidence that a younger person is more likely to

only have AD pathology (Aβ and tau) for any given level of cogni-

tive impairment,44 and AD neuropathological changes are strongly

associated with rapid disease progression in younger elderly.45 One

explanation for observed younger age in the fast accumulators could

be that individuals who had Aβ early had amore rapid Aβ accumulation

leading to rapid aggregation of tau tangles. In contrast, an older person

is more likely to have non-AD pathologies. For instance, lower levels of

Aβ burden are often observed in dementia patientswith cerebrovascu-

lar burden.46 Thus, the greater cerebrovascularWMLburdenobserved

in moderate accumulators might be related to their older age47 and

to their poor outcomes in geriatric depression.48 Furthermore, it is

widely recognized that non-AD pathologies are highly prevalent in

individuals with AD neuropathological changes and may interact with

neurodegenerative processes in AD, leading to worsened outcomes.49

Unfortunately, our study was limited by the exclusion of participants

with vascular pathology etiologies and the lack of biomarkers to assess

the presence of comorbid non-AD pathologies in living individuals with

AD pathological changes. These limitations prevent us from drawing

any definitive conclusions about the involvement of non-AD patholo-

gies in the different tau accumulation profile groups. Therefore, it is

essential for future studies to investigate the underlying pathological

differences between these groups, including the potential contribution

of non-AD pathologies.

We found that the rates of tau accumulation were particularly sig-

nificant in Braak III–IV regions for the moderate accumulators and
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5614 TOSUN ET AL.

F IGURE 4 Variable importance variance diagram for the
multiclass random forest classifier to predict the longitudinal
flortaucipir progression groups: stable, moderate accumulator, and
fast accumulator. Each entry represents the probability of the baseline
variable of interest (position on the y axis) ranking at variable
importance position on the x axis, ranging from 0 in white to 1 in red.
The positional variance diagram shows the variability of variable
importance asmeasured by themulticlass random forest model from
each cross-validation iteration. Each row represents a candidate
predictor variable included in themulticlass random forest modeling,
while each column represents a position in variable importance. The
color of each entry corresponds to the probability of occurrences of
that predictor variable at that variable importance position. The rows
are ordered to rank predictor variables based on their average
variable importance position across all cross-validation iterations. For
example, the tau burden from bilateral Braak IV ROIs ranks in the top
two in the variable importance ordering in 60% to 70% of
cross-validation iterations, while sex ranks the lowest in> 80% of the
cross-validation iterations. Aβ, amyloid beta; APOE, apolipoprotein E;
MMSE,Mini-Mental State Examination; ROI, region of interest.

further expanded to Braak V–VI regions for the fast accumulators,

consistent with neuropathology reports.50 Overall, moderate accumu-

lators and fast accumulators showed increased tau deposition rates in

a topographicalmanner, reflecting initial spreadingof tau in early-stage

AD, and accurately reproducing the topography reported in numerous

independent cohorts.51 This is consistent with the suggested “prion-

like” network explaining the stereotypical pattern of AD pathology

spread,52,53 and is suggestive of the fact that structural and functional

connectivity, rather than spatial proximity, likely plays a major role in

the spread of misfolded proteins across the brain41,54.

Trials on monoclonal antibodies directed against Aβ plaques have

been prescreening participants for evidence of Aβ and only recently

for tau pathology.5 Researchers have also begun developing tau-

targeted vaccines.55 The primary target of Aβ-lowering therapies may

be patientswith limitedwidespread tau, as baseline tauPET can inform

trajectories of accumulation and suggest optimal intervention for the

greatest effectiveness of the treatment. From a clinical trial perspec-

tive, it is important to note that delivering interventions in temporal

proximity to time points of rapid AD protein burden acceleration, par-

ticularly in individuals with an aggressive trajectory of AD protein

accumulation, can improve the efficiency and effectiveness of the trial.

Moreover, while Aβ PET is useful for detecting early-AD pathology,

repeated tau PET is a better indicator of disease progression. Stud-

ies have shown that tau PET progression is associated with future

cognitive decline across theADclinical spectrum.16,56 InCUs, tau accu-

mulation rate in the inferior temporal neocortex, which aligns with

the progression from preclinical AD to MCI, was associated with the

cognitive decline.11 However, it is important to acknowledge that indi-

vidual variations in tau accumulation rates and disease progression

exist. Therefore, a more effective strategy for clinical trial recruit-

ment could be to identify individuals with a targeted tau accumulation

rate at baseline, such as moderate-to-fast, depending on their disease

stage. In the present study, we effectively identified individuals on a

fast tau accumulation trajectory with 95% PPV from a single imaging

time point using a multiclass classification modeling. Our multiclass

approach provides a comprehensive understanding of tau progression

and its association with disease risk factors and patient characteris-

tics, with the potential to inform the development of more effective

treatments for AD. A binary classification model to differentiate fast

accumulators and the rest could be explored in future studies for the

operationalization of tau progression profiling. In hypothetical clini-

cal trial scenarios, re-stratifying Aβ-positive early AD participants for

greater risk of future tau accumulation resulted in a reduction in the

required sample size by up to 77%. This is consistent with previous

work showing that a smaller sample size is required todetect a clinically

meaningful change in cognitive endpoints with trial cohorts screened

for biomarkers relevant to the underlying biology that is targeted by

the treatment57.

The present study has some limitations. The current study is based

on a convenience cohort in which the degree of true population rep-

resentation is unknown. Most notably, only 12% of our study cohort

was diagnosed with dementia and 31%were cognitively impaired, lim-

iting modeling of tau progression in later stages of the disease. This is

reflected in our finding as 57%of the study cohort had stable longitudi-

nal tau profile, which is consistent with previous subtyping approaches

reporting that > 60% of the ADNI tau PET cohort had no significant

tau deposition trajectories.13 However, our study differs from previ-

ous tau-burden subtyping studies in that we model tau progression

patterns jointly with spatial and temporal information from longitudi-

nal data. This contrasts with identifying distinct spatial/stereotypical

tau-burden patterns using cross-sectional data and inferring a theo-

retical model of longitudinal tau spreading, as was done in previous

studies. Although direct comparison of the results is challenging, we

acknowledge the complementary information gained from the exist-

ing cross-sectional studies. We optimized the classifier based on PPV,

not NPV, to maximize the probability that included subjects would

have moderate-to-fast tau accumulation, thus minimizing the dilutive
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TOSUN ET AL. 5615

F IGURE 5 Required treatment effect and sample size estimates. Required treatment effect sizes are plotted against sample sizes in an
18-month early AD trial for four enrichment schemes—black: screened for evidence of Aβ pathology but with variable tau progression; green:
screened for evidence of Aβ pathology and stable tau profile; blue: screened for evidence of Aβ pathology andmoderate tau accumulation profile;
and red: screened for evidence of Aβ pathology and fast tau accumulation profile. The plotted curves show the combinations of the required
treatment effect and sample size to achieve 80% power for clinical outcomemeasures of ADAS-Cog, CDR-SB, and PACC, and biomarker outcome
measures of tau burden in themetaROI. Aβ, amyloid beta; ADAS-Cog, Alzheimer’s Disease Assessment Scale, Cognitive subscale; APOE,
apolipoprotein E; CDR-SB, Clinical Dementia Rating Sum of Boxes; PACC, Preclinical Alzheimer’s Cognitive Composite; ROI, region of interest.

contribution of non-progressing individuals with stable longitudinal

tau profiles. This strategy resulted in the exclusion of some fast accu-

mulators but maximized the fraction of included subjects with stable

low tau levels. From modeling perspective, we chose linear modeling

of flortaucipir accumulation profiles due to limited follow-up dura-

tions in currently available longitudinal flortaucipir PET cohorts. The

set of candidate-independent predictors considered in this study for

tau accumulation profiles may not be exhaustive, but was selected to

mimic a modeling approach practical in clinical trial designs. We chose

to use flortaucipir because it is the most extensively studied tau-PET

tracer, with the largest accessible cohorts and longitudinal studies.

Additionally, flortaucipir is the only Food and Drug Administration–

approved tracer for tau PET to date. Other tau PET tracers, such as
18F-MK-6240 and 18F-PI-2620, have been shown to exhibit patterns

that follow the AD Braak staging.58,59 Thus, we expect the proposed

tau progression profiling to be applicable to studies that use one of

these tau radioligands or a combination of more than one tracer, if

appropriate harmonization is performed. However, the different bind-

ing properties and off-target binding characteristics of different tau

PET tracers could affect our modeling results. Further independent

validation, using other tau PET tracers, is necessary to confirm gener-

alizability of the detected tau progression profiles. Finally, while our

tau progression profiling was performed blinded to clinical diagnosis,

we observed increased prevalence of MCI and dementia diagnosis in

moderate accumulators and fast accumulators compared to the sta-

bles, consistentwith theexpecteddynamics of the tauprogressionwith

the clinical disease progression.15 The interpretation of the diagnos-

tic characteristics of the identified tau progression groups should be
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taken in the context of study-specific recruitment and clinical assess-

ment protocols, though. Our findings may be limited by each cohort’s

inclusion and exclusion criteria, which may not reflect the broader

AD population. Future studies are warranted to test the generalizabil-

ity of our clustering and prediction models to other AD cohorts and

populations with different demographics and clinical characteristics.

5 CONCLUSION

The ability to detect tau progression with baseline imaging and clinical

biomarkers could potentially have a large impact on screening high-risk

individuals for accelerated pathology progression, identifying treat-

ment response or subgroups of responders, and for identifying risk

factors, by better defining the biology. Overall, this study might have

significant implications for designing effective pharmaceutical trials,

as well as in the clinical practice once a disease-modifying treatment

becomes available, by stratifying individuals based on their probabil-

ity to undergo greater pathological changes that are characteristic

and predictive of their clinical disease progression trajectories. Future

studies are warranted to further validate and test the proposed clus-

tering andpredictionmodels ondiverse cohorts. In addition, partnering

with ongoing AD clinical trials to assess the real-life performance of

these models in participant stratification in clinical trials is a promising

future direction.
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